Linear Weingarten hypersurfaces in a unit sphere

نویسنده

  • X. Chao Southeast University, 210096, Nanjing, P. R. China
چکیده مقاله:

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

linear weingarten hypersurfaces in a unit sphere

in this paper, by modifying cheng-yau$'$s technique to complete hypersurfaces in $s^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [h. li, hypersurfaces with constant scalar curvature in space forms, {em math. ann.} {305} (1996), 665--672].

متن کامل

Clifford Hypersurfaces in a Unit Sphere

Let M be a compact Minimal hypersurface of the unit sphere S. In this paper we use a constant vector field on R to characterize the Clifford hypersurfaces S (√ l n ) × S mn ) , l + m = n, in S. We also study compact minimal Einstein hypersurfaces of dimension greater than two in the unit sphere and obtain a lower bound for first nonzero eigenvalue λ1 of its Laplacian operator.

متن کامل

Compact Hypersurfaces in a Unit Sphere with Infinite Fundamental Group

It is our purpose to study curvature structures of compact hypersurfaces in the unit sphere S(1). We proved that the Riemannian product S( √ 1 − c2) ×Sn−1(c) is the only compact hypersurfaces in S(1) with infinite fundamental group, which satisfy r ≥ n−2 n−1 and S ≤ (n − 1)n(r−1)+2 n−2 + n−2 n(r−1)+2 , where n(n − 1)r is the scalar curvature of hypersurfaces and c = n−2 nr . In particular, we o...

متن کامل

Closed Weingarten Hypersurfaces in Semi-riemannian Manifolds

The existence of closed hypersurfaces of prescribed curvature in semi-riemannian manifolds is proved provided there are barriers.

متن کامل

Closed Weingarten Hypersurfaces in Warped Product Manifolds

Given a compact Riemannian manifold M , we consider a warped product M̄ = I ×h M where I is an open interval in R. We suppose that the mean curvature of the fibers do not change sign. Given a positive differentiable function ψ in M̄ , we find a closed hypersurface Σ which is solution of an equation of the form F (B) = ψ, where B is the second fundamental form of Σ and F is a function satisfying c...

متن کامل

Weingarten spacelike hypersurfaces in a de Sitter space

We study some Weingarten spacelike hypersurfaces in a de Sitter space S 1 (1). If the Weingarten spacelike hypersurfaces have two distinct principal curvatures, we obtain two classification theorems which give some characterization of the Riemannian product H(1−coth ̺)× S(1 − tanh ̺), 1 < k < n − 1 in S 1 (1), the hyperbolic cylinder H(1 − coth ̺) × S(1 − tanh ̺) or spherical cylinder H(1 − coth ̺)×...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره 2

صفحات  353- 362

تاریخ انتشار 2015-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023